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Outline

• Core idea

• Five lemma

• Snake lemma

• Balancing Tor/Ext

• Composing derived functors

For simplicity, everything we write will just be modules over a
fixed ring R.

Resources: Weibel, Vakil, McCleary.
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Core idea

To be a double complex, we need:

• d→ ◦ d→ = 0 (i.e., the rows are complexes)

• d↑ ◦ d↑ = 0 (i.e., the columns are complexes)

• d↑ ◦ d→ + d→ ◦ d↑ = 0 (i.e., squares anti-commute)

Ep,q+1 Ep+1,q+1
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Why anti-commute?



Core idea

To be a double complex, we need:

• d→ ◦ d→ = 0 (i.e., the rows are complexes)

• d↑ ◦ d↑ = 0 (i.e., the columns are complexes)

• d↑ ◦ d→ + d→ ◦ d↑ = 0 (i.e., squares anti-commute)

Ep,q+1 Ep+1,q+1

Ep,q Ep+1,q

d→

anti

d→

d↑ d↑

Why anti-commute?



Core idea

To be a double complex, we need:

• d→ ◦ d→ = 0 (i.e., the rows are complexes)

• d↑ ◦ d↑ = 0 (i.e., the columns are complexes)

• d↑ ◦ d→ + d→ ◦ d↑ = 0 (i.e., squares anti-commute)

Ep,q+1 Ep+1,q+1

Ep,q Ep+1,q

d→

anti

d→

d↑ d↑

Why anti-commute?



Core idea

To be a double complex, we need:

• d→ ◦ d→ = 0 (i.e., the rows are complexes)

• d↑ ◦ d↑ = 0 (i.e., the columns are complexes)

• d↑ ◦ d→ + d→ ◦ d↑ = 0 (i.e., squares anti-commute)

Ep,q+1 Ep+1,q+1

Ep,q Ep+1,q

d→

anti

d→

d↑ d↑

Why anti-commute?



Core idea

To be a double complex, we need:

• d→ ◦ d→ = 0 (i.e., the rows are complexes)

• d↑ ◦ d↑ = 0 (i.e., the columns are complexes)

• d↑ ◦ d→ + d→ ◦ d↑ = 0 (i.e., squares anti-commute)

Ep,q+1 Ep+1,q+1

Ep,q Ep+1,q

d→

anti

d→

d↑ d↑

Why anti-commute?



Core idea

Given a double complex {Epq} we can construct a (single) com-
plex called the total complex TotEpq:

(TotEpq)n :=
⊕
p+q=n

Epq

dTot := d↑ + d→

Notice that this is a complex, because

(dTot)
2 =

(
d↑ + d→

)2

=
(
d↑
)2

+
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Core idea

Here’s the core motivation:

Can we calculate the cohomology of TotEpq just from Epq itself?
Perhaps, in some iterative way where successive steps give better
and better approximations of the total cohomology?

Yes (well, under hypotheses that give notions of “convergence,”
which I will mostly sweep under the rug today). [Leray]

The tool is a spectral sequence.
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Core idea
A spectral sequence (rightward) is a sequence of double com-
plexes (→E

pq
r )r∈Z:

→E
pq
0 ,→E

pq
1 ,→E

pq
2 , . . .

which we call pages.

Each page r has a differential that goes

→d
pq
r : →E

pq
r → →E

p−r+1,q+r
r .

These →d
pq
r maps identify →E

pq
r+1 with the cohomology of →d

pq
r

at →E
pq
r ; that is,

→E
pq
r+1

∼=
ker→d

pq
r

im→d
p+r−1,q−r
r

.

This pre-subscript “→” nonsense is just notational to distinguish
from a different filtration to come, and we’ll drop it basically
immediately. Sorry!
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Core idea

This definition seems fiddly and technical, but it’s easier to vi-
sualize. The differential on page r is dpqr : Epqr → Ep−r+1,q+r

r .
Here’s the picture:

• • • • •

• • • • •

• • • • •

• • • • •

Et cetera.
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Core idea

Why would this be a helpful thing to do?

Watch how “turning
the pages” affects the differentials out of the indicated term “◦”:

• • • •
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• • • ◦

We’re ranging over all terms that are degree +1 from ◦.
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Core idea

Recalling that (TotEpq)n = ⊕p+q=nE
pq, intuitively, we’re taking

the “◦” term and mapping it to all the factors that dTot (also
degree +1) does!

By virtue of the fact that the cohomology of the differential dpqr
defines the next page, Epqr+1, (a fact we glazed over when we just
wrote a bunch of dots), intuitively, we’re getting the cohomology
of TotEpq by iteratively hacking away at the factors in the sum.

(This is certainly just a loosey-goose vibes-only explanation at
the moment, but it can be articulated in a precise way!)
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Core idea

What is that precise way?

Theorem. There is a filtration of the nth cohomology of TotEpq

by Epq∞ where p+ q = n.

But what do we mean by Epq∞? We only have Epqr for r ∈ Z. The
complete answer requires the notions of “convergence” which I
am sweeping under the rug, but I will give the idea:
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Core idea
Suppose your spectral sequence is first quadrant; i.e., Epqr = 0
for all p, q < 0 and all r.

(In fact, since each page “is the coho-
mology of the previous,” it’s enough to guarantee first quadrant
support on any one finite page – suppose page 0.)

0 • •

0 • •

0 • •

0 0 0 0 0

The terms now indicated with ∗ will never change, since the next
page will be the cohomology of 0 → ∗ → 0.
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Core idea

Since the entire double complex is first quadrant, given any (p, q),
there is a page r large enough so that the differential on that page
goes

0

0 Epqr

0 0 0

But since Epqr+1 is the cohomology at this point, we get

Epqr
∼= Epqr+1

We call this term Epq∞ .

Outside of the first quadrant setting, convergence might be more
delicate, but we won’t worry too much about such examples here.
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Core idea

You should ask: what was the nonsense with the pre-subscript
arrows →E

pq
r and →d

pq
r which we immediately forgot?

It’s to distinguish from the fact that everything we did was sym-
metric, so you just as easily could have the following definition:
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A spectral sequence (upward) is a sequence of double com-
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Note that the differential on page r is different! Now we have
dpqr : Epqr → Ep+r,q−r+1

r . Here’s the new picture:
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Core idea

Here’s the magic:

This spectral sequence also produces a filtration of the nth coho-
mology of TotEpq! We still chip away at the degree n cohomology
by mapping +1 into the direct sum. This has to be the case – it
was just symmetry!

We can do really cool calculations by fiddling with the right spec-
tral sequence versus the up spectral sequence. When entire pages
degenerate down to nothing (i.e., say →E

pq
∞ = 0), then the same

must be true for ↑E
pq
∞ !

Let me show you, with examples:
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Five lemma

Theorem. Given a commutative diagram with exact rows

A′ B′ C ′ D′ E′

A B C D E

α β γ δ ε

if α, β, δ, and ε are isomorphisms, then so too is γ.

(In fact, the weaker version of the five lemma also follows from
this argument. For the sake of simplicity in presentation, an
exercise for the reader.)
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Five lemma

Note: we don’t actually care about the cohomology of the total-
ization of the double complex we just drew! Instead, we’re just
going to compare the two spectral sequences we have. They both
converge to the cohomology of the total complex, but we don’t
care – we’ll just use that they converge to the same thing.
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Proof. Start with the right spectral sequence.

Because the rows are exact, page 1 is easy.

A lot of terms just died, so page 2 is manageable.

Every single map from page 2 onward is the zero map, so this is
also page ∞.
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spectral sequence.

A lot of these maps are isomorphisms, so page 1 will be nice.

At this point, every single map is the zero map, so this is page
∞ for this spectral sequence.
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But these two spectral sequences are supposed to converge to the
same thing.

→E
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∞ : ↑E
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This forces coker γ = 0 and ker γ = 0, so γ is an isomorphism, as
desired!
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Everything other than the map kerφ′ → cokerψ stabilizes here.
And then on page 3, everything stabilizes.

Since →E
pq
∞ = 0, that means kerφ = H = H ′ = cokerψ′ = 0,

and that means kerφ′ → cokerψ must be an isomorphism.
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If kerφ = H = H ′ = cokerψ′ = 0, then, tracking back their
definitions, this means

0 kerα kerβ ker γ

and cokerα cokerβ coker γ 0

are exact.

If kerφ′ ∼= cokerψ, then

kerφ′ = ker(cokerα→ cokerβ) and

cokerψ = coker(kerβ → ker γ).

This defines the snake morphism ker γ → cokerα. (Little noodly
details to check.)
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Balancing Tor/Ext

Theorem. The left-derived functors

Ln(M ⊗R −)(N)

and

Ln(−⊗R N)(M)

are isomorphic; we call both TorRn (M,N).

Ext is similar (but careful of the contravariance!); consider it a
fun exercise.
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Given two complexes P and Q, you can build the tensor double
complex:

0 0 0

· · · P2 ⊗Q0 P1 ⊗Q0 P0 ⊗Q0 0

· · · P2 ⊗Q1 P1 ⊗Q1 P0 ⊗Q1 0

· · · P2 ⊗Q2 P1 ⊗Q2 P0 ⊗Q2 0

...
...

...
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· · · 0
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...
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Balancing Tor/Ext

For →E
pq
2 = →E

pq
∞ , the only term in total degree p + q = −n

is hn(M ⊗ Q). Thus the filtration of cohomology by page ∞ is
trivial and we get

h−n(TotEpq) ∼= hn(M ⊗Q) = Ln(M ⊗−)(N).

But similarly, for ↑E
pq
2 = ↑E

pq
∞ , the only term in total degree

p+ q = −n is hn(P ⊗N). Thus

h−n(TotEpq) ∼= hn(P ⊗N) = Ln(−⊗N)(M).

By transitivity, Ln(M⊗−)(N) ∼= Ln(−⊗N)(M), as desired.
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Composing derived functors

Theorem. [Grothendieck] If F and G are left-exact functors
and F sends injective objects to G-acyclic objects, then there is
a spectral sequence whose page 2 is

→E
pq
2 = RqG(RpF (M))

which converges to Rp+q(G ◦ F )(M).
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Composing derived functors
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...

...
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Composing derived functors
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Composing derived functors

Let’s calculate ↑E
pq.

Page 2:

...
...

...

0 0 0 0 · · ·

0 0 0 0 · · ·

0 h0(GF (I)) h1(GF (I)) h2(GF (I)) · · ·

0 0 0



Composing derived functors

Let’s calculate ↑E
pq.

Page ∞: Note that hn(GF (I)) is, by definition, Rn(G ◦ F )(M).

...
...

...

0 0 0 0 · · ·

0 0 0 0 · · ·

0 h0(GF (I)) h1(GF (I)) h2(GF (I)) · · ·

0 0 0



Composing derived functors

Thus, via the upward spectral sequence, we get

↑E
pq
2 = ↑E

pq
∞ = Rp+q(G ◦ F )(M).

We claimed we could compare this to RqG(RpF (M)). We’ll see
this composition fall out of the right spectral sequence.
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Composing derived functors

Let’s calculate →E
pq.

Page 0:
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...

0 G(J02) G(J12) G(J22) · · ·

0 G(J01) G(J11) G(J21) · · ·

0 G(J00) G(J10) G(J20) · · ·

0 0 0



Composing derived functors

Let’s calculate →E
pq.

Page 1:

...
...

...

0 h0(G(I∗2)) h1(G(I∗2)) h2(G(I∗2)) · · ·

0 h0(G(I∗1)) h1(G(I∗1)) h2(G(I∗1)) · · ·

0 h0(G(I∗0)) h1(G(I∗0)) h2(G(I∗0)) · · ·

0 0 0



Composing derived functors

Let’s calculate →E
pq.

Page 1:

...
...

...

0 G(h0(I∗2)) G(h1(I∗2)) G(h2(I∗2)) · · ·

0 G(h0(I∗1)) G(h1(I∗1)) G(h2(I∗1)) · · ·

0 G(h0(I∗0)) G(h1(I∗0)) G(h2(I∗0)) · · ·

0 0 0



Composing derived functors

Let’s calculate →E
pq.

Page 2: (who cares about maps now!)

...
...

...

0 h2Gh0F (I) h2Gh1F (I) h2Gh2F (I) · · ·

0 h1Gh0F (I) h1Gh1F (I) h1Gh2F (I) · · ·

0 h0Gh0F (I) h0Gh1F (I) h0Gh2F (I) · · ·

0 0 0



Composing derived functors

We don’t need to know about the maps anymore, because we’ve
just learned that

→E
pq
2 = hqGhpF (I)

= RqG(RpF (M))

Since ↑E
pq and →E

pq converge to the same thing, and we already
learned that ↑E

pq
∞ = Rp+q(G ◦ F )(M), we now know that

→E
pq
2 = RqG(RpF (M))

converges to Rp+q(G ◦ F )(M), as desired!
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